Alameda Point Seaplane Lagoon Remedial Investigation Overview RAB Meeting February 4, 2003

Seaplane Lagoon History

- Primarily source of historical contamination is through discharge of industrial wastewater via the storm drain system from 1940s to 1975
- Highest contamination found in the northeast and northwest corners of the lagoon at 4" to 2 feet below the sediment surface
- Contaminants of concern include heavy metals, pesticides, radionuclides, and PCBs

Objectives of RI

- Describe the nature and extent of sediment contamination
- Present the methods and results of the ecological and human health risk assessment
- Delineate areas that pose an unacceptable risk to human health and the environment and require evaluation in the Feasibility Study (FS)
- Propose preliminary remediation goals (PRGs) for sediment that are health-protective of human and ecological receptors

Ecological Risk Assessment

In accordance with US EPA and Navy Guidance, the ERA was conducted following a two-tiered process:

- Screening-level ERA (SLERA) screening based on conservative benchmarks (ERL) and exposure assumptions
- Baseline ERA (BERA) use site-specific exposure assumptions and refined exposure concentrations

SLERA

■ Develop Conceptual Site Model

- Benthic invertebrates (e.g., worms, shrimp, clams) exposed through ingestion and direct contact with sediment
- Fish and birds (benthic feeding and piscivorous) ingesting sediment and prey that comes in contact with COPECs at Seaplane Lagoon

Identify COPECs

- 20 inorganics and 59 organics identified based on comparisons to benchmarks (e.g., ERLs)
- Radionuclides
- Determine Hazard Quotients Using Conservative Assumptions
 - Receptors include scoter, juvenile and adult least terns, and double-crested cormorants
 - Assumed ingestion of maximum sediment, macoma (clams) and forage fish tissue concentrations
 - Using ecological PRGs, cadmium, lead, total 4,4'-DDx, and total PCBs had HQs greater than 1.0 for all receptors
 - No significant risks associated with exposure to radionuclides

BERA

- Statistical comparisons to ambient levels
- · Nondetects and chemicals not detected in tissue were eliminated
- Assess Effects to Receptors
 - · Benthic invertebrates community
 - No relationship was found between toxicity of sediment to benthic invertebrates and sediment chemistry
 - Low potential for risk to benthic community
 - · Piscivorous fish community
 - Forage fish tissue concentrations compared to literature-derived forage fish PRGs
 - Cadmium was the only compound considered a risk driver to fish based on exceedances above forage fish PRGs
 - Avian community
 - Using refined exposure assumptions, range of SUF, and 95% UCL of the mean for chemical concentrations, risks to the receptor were recalculated
 - No HQ exceeded 1 for scoter
 - HQs >1 for cormorant, but concentrations at SPL were consistent with reference levels
 - HQs for total 4,4'-DDx, cadmium, and total PCBs are > 1 for least terms based on forage fish tissue

- Low potential risks to benthic invertebrates based on relevant bioassay studies
- Cadmium is the only COPEC that potentially poses risk to forage fish in Seaplane Lagoon
- Little risk is posed to benthic-feeding birds (surf scoter) or to piscivorous birds such as the cormorant based on the risk assessment.
- The least tern is the most sensitive avian receptor evaluated with HQ>1 for cadmium, total 4,4'-DDx and total PCBs.

Human Health Risk Assessment

- **■** Exposure Assessment
 - Adult only exposures for RME and CTE scenarios
 - Complete exposure pathways include direct contact with sediment, ingestion of shellfish, and ingestion of forage fish
 - For radionuclides, exposure through ingestion of sediment and external radiation
- **■** Toxicity Assessment
 - US EPA Toxicity only
 - Combined US EPA and DTSC Toxicity Values
- Risk Characterization

10

Summary of Hazard Index

Direct Contact with Sediments
Ingestion of Forage Fish

Note: Hazard associated with direct contact with sediment is less than 1.0

13

Conclusions of HHRA

- Risks at SPL were slightly higher than reference for the direct contact and ingestion of forage fish pathway
- Risks from direct contact were within US EPA's risk management range (10⁻⁴ to 10⁻⁶)
- Risk from ingestion of shellfish were consistent with reference risks
- Risk drivers included arsenic, chromium, and total PCBs; however, both arsenic and chromium are naturally occurring and consistent with ambient levels.
- Risk from radionuclides are an order of magnitude below US EPA's Establishment of Cleanup Levels for CERCLA Site with Radioactive Contamination (3 x 10⁻⁴)

4

Development of Feasibility Footprint

- Ecological Footprint
 - Cadmium PRG developed for protection of young and adult forage fish
 - PRGs for cadmium, total PCBs, and total 4,4'-DDx were backcalculated to derive safe sediment concentration for protection of least terns.
- Proposed PRGs for Protection of Ecological Receptors

	PRGs (mg/kg dry wt)		
COPEC	Fish		Avian
	Young	Adults	TRV _{kw}
Cadmium	81.85	200	24.40
DDx	NA	NA	0.13
PCBs	NA	NA	1.13

1:

Ç.

Development of Feasibility Footprint (cont'd)

- Total PCBs was the only compound found elevated above ambient levels
- Elimination of the areas proposed for the ecological footprint would effectively eliminate potential risks to human receptors via direct and indirect exposure pathways.

16

Proposed Remedial Footprint

PRGs of 24.4 mg/kg dry wt for Cd; 0.13 mg/kg DW for DDx; and 1.13 mg/kg DW for PCBs are proposed for the Feasibility Footprint

17

Questions???

3__